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Four corrections to the effective-mass approximation are considered with first-order perturbation theory; 
namely, the deviation of the total perturbing potential U from the potential UQ~ —e2/nr (K=static dielectric 
constant) and the three relativistic corrections: (a) spin-orbit coupling, (b) s-shift correction, and (c) mass-
velocity correction. The number of independent matrix elements is determined for each perturbation by 
means of the selection-rule theorem. There is no effect of spin-orbit coupling on the effective-mass ground 
state; the corresponding effect on the exact eigenstates of the nonrelativistic Hamiltonian appears to be 
small for donors in Si, and does not cause a splitting of the sextet state (with spin) in Ge or Si. Both of the 
other two relativistic corrections give rise to a shift and a splitting of the degenerate effective-mass ground 
state, as does the perturbation U— UQ. The magnitude of the relativistic corrections and their relative con
tribution to the observed splitting of the effective-mass ground state are discussed briefly. 

I. INTRODUCTION 

IN this paper, some of the corrections to the effective-
mass theory1 of shallow donor states in Ge and Si 

will be studied. The simple effective-mass equation for 
the motion of a donor electron in the perturbed periodic-
potential field of a germanium or silicon crystal accounts 
for a qualitatively correct picture of the stationary 
eigenstates of donor electrons. The energy spectra of 
different donor impurities (P, As, Sb) in silicon have 
been determined experimentally from infrared-absorp
tion measurements, and quantitative agreement has 
been found between theory and experiment, with the 
exception of the ground state.2 There are, however, 
some discrepancies between theory and experiment 
with respect to the ground-state energy and the ampli
tude of its effective-mass wave function at a donor site. 
Kohn and Luttinger3 have shown that the effective-
mass wave function can be corrected for by a simple 
semiempirical procedure, using the observed energy of 
the lowest donor state. It has been recognized by the 
same authors that the discrepancies are caused by the 
breakdown of the effective-mass formalism in the 
immediate neighborhood of the impurity ion where the 
perturbing potential is large and varies strongly with 
distance from the impurity nucleus. Therefore, several 
corrections to the effective-mass theory are necessary. 
These corrections are discussed in Sec. II where the 
problem is also formulated so it can be treated by 
first-order perturbation theory. In Sec. I l l , a group-
theoretical analysis is presented to determine the 
number of independent constants for the matrixes of 
the perturbation components with the help of the 
selection-rule theorem. Section IV is concerned with a 
brief qualitative discussion of the relative magnitudes 
of the different perturbations considered in this paper. 

1 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955); 
W. Kohn, in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc., New York, 1957), Vol. 5. 

2 G. S. Picus, E. Burnstein, and B. Hen vis, J. Phys. Chem. 
Solids 1, 75 (1956); see also W. Kohn, Phys. Rev. 98, 1856 (1955). 

3 W. Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955). 

II. CORRECTIONS—FORMULATION OF 
THE PROBLEM 

If one neglects the effects of lattice vibrations, there 
are three corrections which affect the effective-mass 
ground state: 

(1) the deviation of the total perturbing potential 
Z7(r) from Uo(r)= ~e2/ar due to the self-consistent 
potential of the impurity ion in the central cell region— 
being different from that of a Ge or Si atom—the effect 
of local strain introduced by the impurity, and polar
ization effects (see Ref. 7 below); 

(2) the admixture of Bloch functions from higher 
bands into the impurity wave function caused by the 
strong potential U near the impurity ion; and 

(3) relativistic corrections: (a) spin-orbit coupling; 
(b) s-shift correction, and (c) mass-velocity correction. 

It is a characteristic property of these corrections 
that the major contribution of each of them comes from 
the central cell; that is, the atomic cell containing the 
impurity ion. Thus, in calculating their effect on the 
effective-mass ground state, there are two technical 
difficulties. First, one must know the correct form of 
the perturbing potential U{r) within the central cell. 
This potential is known for small r<3C#o(=5.29X10~9 

cm) and for large r^>rs (%7rrs
z = ̂ tt, where 0 is the unit 

cell volume).3 The symmetry of U(r) is that of a 
lattice site and is given by the tetrahedral point group. 
Second, the Bloch functions admixed into the impurity 
wave function must be known. However, at present 
one knows only the approximate Bloch functions of 
the lowest conduction band. In the case of Ge and Si, 
these functions are suitable admixtures of 4? and 4p 
atomic orbitals, and of 3s and 3p atomic orbitals, 
respectively. Thus, we shall neglect the admixtures of 
Bloch functions from higher bands into an impurity 
wave function and shall consider only the effects of 
corrections (1) and (3). 

A primary motivation for this consideration is a group-
theoretical analysis of the four perturbations associated 
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with corrections (1) and (3). I t is of particular interest 
to know how the eightfold and twelvefold degenerate 
effective-mass ground states, including spin-degeneracy, 
of donor electrons in Ge and Si, respectively, split under 
the influence of these corrections. This question is of 
interest because a number of experimental investiga
tions have been carried out in an original manner to 
determine the structure of the energy levels emerging 
from the degenerate effective-mass ground state (see 
Fig. I) .4 The experimental information on the energy-
level scheme of those impurity states which emerge 
from the degenerate effective-mass ground state gives 
rise to two questions: (1) to what extent do the three 
relativistic corrections account for the observed energy 
levels; and (2) how large is the additional splitting to 
be expected from spin-orbit coupling? This problem is 
formulated with the two-component Pauli equation5 

p2 h h 
—+V+ (VUXp) -« r+ (VO-p) 
2m ^m2c2 Mm2c2 

(£o+c0)2]^=£^, (1) 
2mc2 J 

where EQ is the lowest energy eigenvalue of the non-
relativistic Hamiltonian HQ defined below. The second 
term is the total potential energy of an impurity 
electron, 

•U(r)=F(r)+tf(r), (2) 

where V(t) is an effective periodic potential. The three 
last terms of Eq. (1) are peculiar to the relativistic 
theory and correspond to the corrections (3a), (3b), 
and (3c). We mention that the s-shift correction shifts 
the s terms of a free atom (pure Coulomb potential), 
but contributes nothing to p, dy and higher terms.6 The 
stationary states of Eq. (1), its eigenvalues, and the 
associated two-component wave functions, cannot be 

4 The results summarized in Fig. 1 have been obtained by 
experimental investigations of a different nature: (1) The change 
of the electron spin resonance spectrum of donor electrons in Si 
has been investigated by D. K. Wilson and F. Feher, Phys. Rev. 
124, 1068 (1961). (2) The low-temperature electrical resistivity 
of antimony-doped Ge under uniaxial strain and compression 
has been measured by F. Fritzsche, Phys. Rev. 125, 1560 (1961); 
Twose shows in an appendix to Fritzsche's paper, that, even in 
the effective-mass approximation, there is a small splitting of the 
degenerate ground state; this splitting is neglected here. (3) The 
strain-induced shifts of the absorption lines of the Lyman series 
for donor electrons in Ge have been observed by G. Weinreich, 
W. S. Boyle, H. A. White, and K. F. Rodgers, Phys. Rev. Letters 
3, 244 (1959). 

5 This equation is derived from the four-component Dirac 
equation under the assumption that at all points in the configu
ration space, two components are small compared to the other 
two. This assumption is justified (in zero magnetic field) if the 
first two terms of Eq. (1) are small compared with the rest-
energy of an electron. 

6 E . U. Condon and A. H. Shorley, Theory of Atomic Spectra 
(Cambridge University Press, Cambridge, England, 1958), p. 125. 
In the present case the potential V(r)—and in particular U(r)—is 
not a pure Coulomb potential and, therefore, the so-called 
s-shift correction does contribute very slightly to Bloch states and 
to impurity states which are not pure s states. 

-

em 

SILICON 

P As 

4- A 

s. 

Sb 

d 

em 

T 

P 

T 

At 

GERMANIUM 

*• 
T 

Sb 

FIG. 1. Energy-level scheme, neglecting the spin-degeneracy, 
for singlet (s) and doublet (d) states of donors in silicon and for 
singlet and triplet (t) states for donors in germanium after Wilson 
and Feher, and Fritzsche. (See Ref. 4.) The splitting between 
doublet and triplet states for donors in Si is assumed to be zero 
(em = energy of effective-mass ground state). 

calculated without an approximation. In the next 
section the problem is treated by perturbation theory. 

III. PERTURBATION THEORY 

The nonrelativistic problem with the Hamiltonian 

H0=(v2/2m)+V(t)+U0(r) (3) 

has been treated by Kohn and Luttinger.1 The impurity 
potential Uo=—e2/nr, where K is the static dielectric 
constant.7 An eigenfunction of Ho can be developed, 
in terms of Bloch functions, for electrons moving in the 
periodic potential V(t): 

^ = E ^ n ( k ) ^ n ( k , r ) , (4) 

where n labels the conduction bands. In the effective-
mass approximation, a donor wave function is written 
as an appropriate linear combination of wave functions 

* « = £ i4 0 (k-k^o(k-k<, r) , (5) 
k 

where i= 1, 2, • • •, m correspond to the minima of the 
lowest conduction band, n=0. Assuming that A0 has 
appreciable magnitude only in the vicinity of kt, one 
can rewrite Eq. (5) to a lowest approximation, in the 
form 

^=F,(r)ft>(k,-,r), (6) 
where 

^ ( r ) = E ^o(k-ki) expOVr) 
k 

is the envelope function, i.e, an eigenfunction of the 
effective mass equation. The wave function \f/{ is 
normalized as usual (see Ref. 3). 

7 K. Miiller [dissertation, Braunschweig, 1960 (unpublished)] 
has investigated in some detail the polarization field near a 
point charge located at a lattice site of a cubic semiconductor. 
He employs a technique similar to Ewald's method of long waves 
to obtain the corrections to the continuum polarization. A 
deformation of the potential Z7o occurs for distances r<3a 
(a = lattice constant) because of a dispersion of the polarizability 
for short wavelengths and because of a local dielectric anisotropy 
near the point change. 
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TABLE I. Character table for the tetrahedal double group.J 

\ C l a s s 
Character \ 

Wi 
xr2 2r3 3r4 3r5 
2r6 
2r7 4r8 

Ge, "Is" state 
with spin 

Si, "Is" state 
with spin 

IE 

1 
1 
2 
3 
3 

2 
2 
4 

8 

12 

1# 

1 
1 
2 
3 
3 

- 2 
- 2 
- 4 

- 8 

- 1 2 

6C4
2 

1 
1 
2 

- 1 
- 1 

0 
0 
0 

0 

0 

8C3 

1 
1 

- 1 
0 
0 

1 
1 

- 1 

1 

0 

8C3 

1 
1 

- 1 
0 
0 

- 1 
- 1 

1 

- 1 

0 

6S4 

1 
- 1 

0 
- 1 

1 

2 
- 2 

0 

0 

0 

6^4 

1 
- 1 

0 
- 1 

1 

- 2 
- 2 

0 

0 

0 

12<rd 

1 
- 1 

0 
1 
1 

0 
0 
0 

0 

0 

a For the symmetry operations of the tetrahedral point group and the 
associated double group, see G. F. Koster, in Solid State Physics, edited 
by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), 
Vol. 5. The direct products of the double group representations are given 
by D. Schechter Technical Report No. 4 Carnegie Institute of Technology, 
March, 1958 (unpublished). The decompositions of symmetric direct 
products can be determined by a method found in F. D. Murnaghan, 
The Theory of Group Representations (The Johns Hopkins Press, Baltimore, 
1938), p. 72. 

As the perturbation to the Hamiltonian Ho-1 (1 is the 
unit matrix), we take 

H'=(U-U,)'l-
4m2c2 

-(WXp)-v 

+ (VO-p)- l (Eo+vy-1. (7) 
4:im2c2 2mc2 

The first term of Eq. (7) is the deviation of the actual 
impurity potential from the potential UQ of the effective-
mass equation; the other terms represent the relativistic 
corrections which depend on the total potential V. 
Taking the eigenfunction of Ho given by the effective-
mass approximation and multiplied by an arbitrary 
spin function we readily find the correct zeroth-order 
wave function corresponding to Hf from symmetry 
considerations. 

Germanium. The lowest effective-mass eigenstate is 
eightfold degenerate when the spin degeneracy is in
cluded. This state belongs to a reducible representation 
of the tetrahedral double group Td; a perturbation can 
split this state into three states associated with the 
representations 2r6 , 2r7, and 4r8 as seen from Table I. 
The correct zeroth-order wave function, which forms 
a basis for an irreducible representation T s of Td, is 
written in the form 

* r S = Z ( c x / % + / 3 / s x ; ) , ( r= 1, 2, • • • / ) , (8) 
i 

where the two-component wave functions fa and Xt-
are related by time reversal symmetry; i.e., Wigner's 
operation K for spin one-half particles,8 

0<= [ ( « + + « _ ) / > £ > , , xi=Z(tL--u+)/TJT}f,i*. (9) 

The wave functions ^ are given by Eq. (6), if not 
explicitly noted otherwise. The two normalized spin 
functions u+ and w_, as well as the linear combinations 
U++U- and U-—u+i form a basis for the representation 
2r6.9 The formal advantage for choosing the 2m spin 
functions fa and Xt- as components of the zeroth-order 
wave functions ^r8, instead of spin-up and spin-down 
functions, is suggested by the time reversal symmetry 
between fa and Xim Hence, one immediately finds the 
time-reversed wave function of tyrs; it is 

^^r. = ECferO*X.-+03/O**<], (10) 

which, according to Kramer's theorem, also belongs to 
the basis given by Eq. (8). There is no additional 
degeneracy of an eigenstate associated with 2r6 , 2r7 , or 
4r8 because of time reversal symmetry; the above 
representations fall under Wigner's case (c),10 as does 
the small representation of the Bloch state for the 
conduction band minimum. The coefficients a/8 and 
(3f8 are calculated in Appendix A; the results are: 
for (2r6), 

P>«= (0,0,0,0), P*<=a%"; ( ^ 
for (2r7), 

(Hb) 

(He) 

8 The time reversal operation K = iayK0, where K0 is the 
complex conjugation operator, 

a^=( l /2v3)( l , 1 , - 1 , - 1 ) , 

a;27=(ft17)*, 
ft27 = a/7; 

and for (T8), 

a / 8 =(l /2v2)( l+i , - 1 - * , 1 - M - l ) , 

ft»= (0,0,0,0), 

a ^ « = [ l / 2 ( 6 ) ^ ] ( - 2 , - 2 , + 2 , + 2 ) , 

jV8=[l/2(6)*'*](l+i, - 1 - f , l - i , ; - l ) , 

ft38 = a;28, 

a/8=&18 , 

ft48=W8)*. 

Silicon. The twelvefold-degenerate effective-mass 
ground state, including the electron spin, can split under 
a perturbation into four different states; the appropriate 
decomposition, as found from Table I, is 2 r 6 + 2 r 7 
+ 2 4 r 8 . The correct zeroth-order wave functions given 
by Eq. (8) can be determined with the help of the table 
of coefficients given in Ref. 1 [Kohn, Eq. (5.46)] by 
proceeding as in Appendix A for the case of Ge. 

9 The complex conjugate spin functions u+* and w_*, as well 
as the two functions w+*+w_* and w_*—u+*, transform according 
to 2r6* under the symmetry operations of Td. 

10 E. Wigner, Nachr. Acad. Wiss. Goettingen, Math.-Physik. 
Kl. 1932, 546, 

file:///Class
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The tyrs are the correct zero-order wave functions 
for the perturbation H'. Thus, the influence of the 
perturbation on the effective-mass energy levels of the 
unperturbed Hamiltonian is obtained by evaluating 
the expectation value of Hr in the wave functions ^ r s . 
If one rewrites Eq. (7) in the form 

# '=! :#* , (12) 

where Hi—potential correction, ZT2=spin-orbit coupling 
correction, Hz=s-shift correction, HA=mass-velocity 
correction, the matrix elements of the four pertur
bations are given by 

Vr8*H,&r'*>dT, (13) 

where a.s. indicates integrations over all space. In order 
to find the number of independent constants for each 
perturbation, assuming that the ^ r s are given in terms 
of the effective-mass wave functions xf/^ Eq. (6), we 
proceed in the following way. The matrices in the ^ r s 

representation can be written as a linear combination 
of matrices in the fa, X; representation; the latter are 
given by 

<f>i*HK<t>jdr a n d f & 
J a.s. 

m.Xidr. (14) 

Taking the case of germanium as an example, we know 
that the wave functions <j>i, X* transform according to 
the representation ( 2 r 6 + 2 r 7 + 4 r 8 ) . The four pertur
bations HK are scalar quantities and transform according 
to lYi. Thus, in the fa, X4- representation, the selection 
rule theorem11 gives at most three independent con
stants for each perturbation HK. For the spin-independ
ent perturbations (K= 1, 3, 4) two of the three constants 
must be equal to one another; that is, the energy 
eigenvalues associated with the representations 2T6 and 
4T8 are not separated by these perturbations since the 
matrices between fa and Xy vanish (the spin functions 
are orthogonal to one another). The spin-independent 
perturbation ( K = 2 ) , however, could lift the degeneracy. 
To find out whether this is actually the case, the spin 
functions are eliminated from the matrices (14). Then 
we are left with the expressions 

Mij>K= ffHtfjdr, ( K = 1 , 3 , 4 ) , (15) 

and 

Af.v.2= / ffh^jdr, mijt2= ffh^fdr, (16) 

where hx is the x component of a pseudo-vector operator 

11 V. Heine, Group Theory in Quantum Mechanics (Pergamon 
Press, Ltd., London, 1960), 

TABLE II. Number of independent constants obtained with the 
effective-mass approximation [\̂ » is given by Eq. (6)] for the 
matrices given by Eqs. (15) and (16). 

\ P e r t u r -
\bation 

Semi- \ . 
conductor\ 

Germanium 

Silicon 

Potential Spin-orbit 
correction coupling 

2 0(1) 

3 .0 (3) 

h defined by the equation12 

H2=h<r. 

s-shift 
correction 

2 

3 

Mass-
velocity 

correction 

2 

3 

(17) 

The number of independent constants contained in 
Eqs. (15) and (16) is determined with the selection 
rule theorem. The results are found in Table I I ; they 
apply also—as can be shown with a lengthy calculation 
—if the effective-mass wave functions are given by 
iA;=Lk^o(k) exp( ikT)[> k .+ (k—k*-)• Vk_k t«k], where 
| k—ki | « | k; | ; the derivatives of U& are taken at k = k4. 
If one goes beyond this effective-mass approximation 
by assuming that the impurity wave functions contain 
admixtures of Bloch functions from higher conduction 
bands, the spin-orbit coupling matrices (16) give one 
and three independent constants for Ge and Si, respec
tively, as indicated in Table II.13 I t is emphasized 
that, in any case, the spin-orbit matrices 9TZ;y,2 resulting 
from those matrices (14) which connect time reversal 
wave functions, such as fa and Xy, vanish.14 

In order to discuss the influence of the perturbations 
HK on the unperturbed energy levels, let us write down 
the solutions of that secular problem obtained by 
taking the scalar product of the two-component wave 
equation 

(Ho-l+H')*r. = E&„ (18) 

with Xi and fa. The eigenvalues of the secular matrix 
are found with the help of the eigenvectors a / s , fiirs 

(i—1,2, • • • m). For germanium we find 

Ee=E0+Z(Mu,K+M2i,K+MzltK+M,1,K), 
K 

E 7 = -Eo+E ( M u . , + J f 2 i , , - J f ,i,«-Jlf «,c), (19) 
K 

E$=E7. 

12 Thus hxypi = - (n2/4:m2c2) (vvXiWi)?, etc. 
13 For Ge the basis ypi transforms according to the representation 

r i -h r 4 of the single group T&. The symmetric direct product 
[ r + r 4 ] s y m

2 contains the trivial representation Ti, according to 
which Hi, Hz, and Hi transform, twice. The three components 
of the pseudovector operator h(hx,hy,hz) transform according to 
r6 . Since h is a vector operator, but not a vector, we must take 
the direct product r 5 X ( r i + r 4 ) and see how often it contains 
Ti and r 4 in order to determine the number of independent 
constants for the matrices Mij, 2 and Ma, 2. (If, however, h were 
a vector, and not a vector operator, we should take the symmetric 
direct product [ r i - fTJ s y m

2 and see how often i\ contains r5.) 
14 Because h is imaginary and Hermitian, one has 2fllt7,2 

= — 9fTC/»-,2. On the other hand, the symmetry requires 3TZ;y,2 
=9TC/t\2; that is, the solution of the secular problem given below 
shows that the matrices 9fTC»y, % must be real. 

file:///Pertur-
file:///bation
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IV. DISCUSSION OF THE CORRECTIONS 

A. Potential Correction 

The total perturbing potential U can be written in 
terms of those harmonic functions which are invariant 
under the symmetry operations of the tetrahedral 
point group. The first few terms of an expansion of U 
are given by 

xyz i ^+y+s 4 —3r 4 / 5 
U(r) = f(r)+g(r)—+h(r) + • • • , (20) 

rz ri 
where3 

e2(Zd—Z0) 
lim/(r) = , lim/(r) = UQ(r), 

Za and Zo being the atomic numbers of a donor atom 
and of a Ge or Si atom, respectively. The harmonic 
functions of the tetrahedral group are linear combi
nations of surface spherical harmonics Fj w , with the 
same subindex I. Since spherical harmonics are solutions 
of the Laplace equation, one finds 

\img(r) = Arz, \img(r) = Br"z
 7 (21) 

r-»0 r->°o 

where A and B are constants. 
The potential correction U—UQ causes a shift and a 

splitting of the degenerate ground state. The shift 
increases the binding energy and is proportional to the 
diagonal elements 

Miitl= f \^(U-U0)dr 
J a.s. 

f 2dr 
^\F(0)\*V | * o ( k , , r ) | 7 t o — , (22) 

J o.c. 0 

where F(0) = F(t=0) (the index i is omitted) and 
c.c. = central cell. The integral on the right side of 
Eq. (22) is the average value of the potential energy 
of a conduction electron; it is of the order of 10 eV. 
The factor before the integral is given by 

i |F(0) |212=f(r8Ao*)3=0.78XlO-4 for Ge(a 0 *=45A) , 

-0 .77X10" 3 for Si(a 0*=20A). 

Thus, the shift of the effective-mass ground state 
amounts to 10~3 eV and 10~~2 eV for donors in Ge and 
Si, respectively. The shifts are larger by one order of 
magnitude if one takes the amplitudes of the corrected 
envelope functions (see Ref. 1, Kohn). The splitting 
of the degenerate effective-mass ground state depends 
on the off-diagonal elements Af^.i which contain the 
anisotropic contribution U(r) — f(r) to the perturbing 
potential. We are not able to estimate the off-diagonal 
elements, since the anisotropic contributions to U given 
by Eq. (20), which vanish with rn (n> 3), are not known. 

B. Spin-Orbit Coupling 

The spin-orbit matrix elements (14) between wave 
functions <j>i and Xy vanish. Therefore, the degeneracy 
of the sextet consisting of the two states 2 r 7 and 4r 8 

remains unlifted [see Eq. (19) for the case of Ge]. This 
result is not restricted to the effective-mass approxi
mation and holds also if the wave functions fc and Xy 
are given in terms of the exact eigenfunctions of Ho 
which can be written in the form ^ = 2 ] n , k ^ n ( k — k») 
X^n(k~ki , r). However, spin-orbit matrix elements 
(14) between wave functions <j>i and $y can be different 
from zero, according to the selection-rule theorem. 
Whether this is actually the case, if the fa are given by 
the effective-mass approximation Eq. (6) with \pQ 
= exp(ik«r)^k(r), can be seen from the matrices15 

h2 r r 
Mij,2 = / exp (i (ky- k») • r) 

dr f 
Xu*i*(vVXiVukJ)x — + / exp(*'(ky-k;)-r) 

0 A.s. 

XFfFju^ivUXiVu^dr . (23) 

I t is assumed that the envelope functions Fi and their 
first derivatives are smooth functions of r. The first 
integral (over a unit cell) accounts for the effect of 
spin-orbit coupling on a Bloch state kz; it is zero for 
all i, j as can be shown with the help of the selection-
rule theorem.16 Furthermore, the corresponding diagonal 
matrix element for an arbitrary state of the lowest 
("s-like") conduction band vanishes, as can be seen by 
writing u^(t) and V(r) as a Fourier series and then 
applying the relation Uk*=au„b (aa*= 1) which follows 
from the inversion symmetry of F(r).17 The second 
integral of Eq. (23) describes the effect of spin-orbit 
coupling on the effective-mass ground state; it can be 
shown that this integral also vanishes for all i, j . l s 

15 The integral can diverge in its present form. This divergence 
is a consequence of the approximation applied in reducing the 
four-component Dirac equation to the two-component Pauli 
equation. The difficulty is removed, as in the theory of atomic 
spectra, by replacing ^*0 with (1— V/2mc2)~2'yV. 

16 The Bloch state k(ir\a,Tr\a,ir\a) (of the conduction band of 
Ge) transforms according to the small representation L\\ the x, 
y, and z components of a pseudo-vector transform according to 
Lz and L2, respectively. The direct product (Z,3-f.Li)X£i does 
not contain L\. However, in the second-order approximation of 
perturbation theory, the energy levels are determined by matrix 
elements between an L\ state and corresponding states of higher 
conduction bands which may not vanish. 

17 R. J. Elliott, Phys. Rev. 96, 266 (1954).m 
18 Since the first integral of Eq. (23) vanishes, we have Mi /2 

= SffhzfflfjdT, where hx(U) = -(&/4m?c*)(VUXiV)*- This 
expression for If*/, 2 leads to the second integral of Eq. (23), with 
our assumptions on Fi and on its first derivatives. F01 the case 
of germanium it is readily seen that Mij, 2 vanishes. Using Elliott's 
relation and denoting with \p-i the effective-mass wave function 
for — k; which contains F_ t-(r)=^(r), we find Mij,2=— -M"—y—**,2. 
The wave vectors k; and — kf differ by 27r times a vector of the 
reciprocal lattice, thus if_/_»-, 2 = Afy», 2. Furthermore, since the 
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Hence, for Ge, there is no effect of spin-orbit coupling 
in first-order perturbation theory if the zero-order wave 
functions are taken from the effective-mass approxi
mation Eq. (6). The same result holds for the effective-
mass ground state of donors in Si. An upper limit for 
the second-order change of the energy of the effective-
mass ground state is estimated roughly in Appendix B ; 
it is found to be 5X10~5 eV for donor electrons in Ge. 

The first-order effect on the exact eigenstates of Ho 
cannot be calculated, since it is not known to what 
extent Bloch functions of higher bands are admixed 
into the impurity wave functions because of the strong 
impurity potential in the central cell. An order of 
magnitude estimate for the ratio of the coefficients 
An(fi9^0) and AQ, defined by Eq. (4), is given by 
Kohn.1 From this estimate it is seen that the admixture 
for donors in Ge is much larger than for donors in Si. 
The different extent of admixture appears to be a 
characteristic distinction between impurity wave func
tions in Ge and Si. This distinction can be important 
for the g factors of donor electrons.19 

C. s-Shift and Mass-Velocity Correction 

These corrections20 do not contain the electron spin 
and, therefore, they cannot cause a splitting of the 

Mij,2 are elements of a secular matrix and since these elements 
are real according to Eq. (19), we have Mij, 2—Mji, i and, therefore, 
the matrix elements vanish. 

19 A difference between the g factor of donor electrons and that 
approximative g factor for donor electrons given by L. M. Roth 
and B. Lax [Phys. Rev. Letters 3, 217 (1959), Eq. (5)] in terms 
of the tensor components gu and gi calculated for a single ellip
soidal energy surface of conduction electrons, may be caused to 
some extent by the admixture of Bloch functions from higher 
bands into the impurity wave function. For antimony, phosphorus, 
and arsenic impurities in Si, the g factors of donor electrons have 
been measured by D. K. Wilson and F. Feher [Phys. Rev. 124, 
1068 (1961)]. For conduction electrons in Si, experimental values 
for the anisotropic g factor do not seem to be available. However, 
L. M. Roth [Phys. Rev. 118, 1534 (I960)], H. Hagesawa [Phys. 
Rev. 118, 1523 (I960)], and L. Liu [Phys. Rev. Letters 6, 683 
(1961)] have calculated the g factor of conduction electrons in Si. 
The experimental result for the isotropic g factor of donor electrons 
and the theoretical result given in terms of gu and gi are in 
quantitative agreement. Thus, it appears that the impurity wave 
functions in Si are well described with the effective-mass approxi
mation which neglects the admixture of Bloch functions from 
higher conduction bands. On the other hand, the experimental 
values of the g factors for donor electrons of phosphorus or 
arsenic impurities in Ge measured by G. Feher, D. K. Wilson, 
and E. A. Gere [Phys. Rev. Letters 3, 25 (1959)] are not in 
quantitative agreement with the theoretical value derived from 
gu and gi for an ellipsoidal energy surface of conduction electrons. 
The difference may be caused, as in the more subtle case of 
antimony-doped Ge (see Feher et ah, Roth and Lax), to some 
extent by the admixture of Bloch functions from higher conduction 
bands into the impurity wave functions. An excellent review 
article on g factors (and spin-lattice relaxation) has been presented 
by Y. Yafet, in Solid-State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1963), Vol. 14, p. 1. 

20 F. Herman (private communication) has solved the Hartree-
Fock-Slater wave equations for neutral germanium and silicon 
atoms and then applied first-order perturbation theory to account 
for the relativistic corrections. I t is a pleasure to thank Dr. 
Herman for a number of interesting comments concerning the 
relativistic corrections on Bloch states and for making available 
to us his numerical results for the three relativistic corrections 
on atomic orbitals of germanium and silicon atoms. 

degenerate state 2r7 and 4r8 . However, since both the 
s-shift correction Hz and the mass-velocity correction 
H\ have the full tetrahedral symmetry, they can partly 
lift the 2w-fold degeneracy of the effective-mass ground 
state, as does the potential correction Hi. Let us 
compare the shift and the splitting caused by Hz and 
HA with the corresponding effect of H\. If one substi
tutes the effective-mass wave function into Eq. (15), 
the matrix elements of the s-shif t correction are given by 

h2 r l r 
Miiti= *o*(kir)vF-V*o(ky ,r)dr 

4m2c2Ll2iu.c. 

+ | ^ ( 0 ) | 2 / * ^o*(k<Jr)v^-V^o(ky,r)rfrl. (24) 
J c.c. -J 

Similarly, the matrix elements of the mass-velocity 
correction are found as 

MijA= [ - f ^o*(k i ,r)(E0+F)Vo(kyJr)^r 
2wc2Lo7u.c. 

+ \F(0)|2 f ^(Kr)U(V+V+2Eo)MKr)dr'] . (25) 
J c.c. —' 

The second contribution to each matrix element has 
been restricted to the central cell where the potential 
U has a singularity. The first term of each of the two 
diagonal elements [Eqs. (24) and (25)] corresponds to 
the shift of the Bloch state of the conduction band 
minimum. For these terms there are no quantitative 
values available at present. However, Herman20 has 
calculated the effect of all three relativistic corrections 
on the 3s and 3p atomic orbital of a free Si atom and 
on the 4s and 4/> atomic orbital of a free Ge atom. His 
result for the s-shift correction to the 3s and 4s atomic 
states of Si and Ge is +0.16 and +0.93 eV, respectively, 
and the corresponding numbers for the mass-velocity 
correction are —0.62 and —1.62 eV. Hence, there is a 
partial cancellation of the two corrections. Assuming 
that the net shift of the conduction band minimum of 
Ge is % eV, we estimate roughly that the second terms 
of both diagonal elements, which describe the relative 
shift of the ground state with respect to the conduction 
band minimum, give a net shift of the order of magni
tude § | F(Q) 12ft eV, for As and Sb donors. Thus, with the 
corrected envelope function, the shift amounts to 
~ 5 X 10 -4 and ~ 5 X 10 -3 eV for As and Sb donor states 
in germanium and silicon, respectively. 

The nondiagonal elements of Eqs. (24) and (25) 
contribute to the observed splitting of the degenerate 
effective-mass ground state (see Fig. 1). In the case of 
donor electrons in Ge, the relative contribution of the 
two relativistic corrections to the splitting between the 
2r6 state and the 2 r 7 + 4 r 8 state is determined by the 
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ratio 

^0*(k i)£/CU+F+2£0)^o(k i)<fr -
4w2c2 

+o*QU)VV-vfo(ki)dT 

L 
(26) 

fo*()U)(U-Uo)ft>fa)dT 

Since it is the anisotropic part of the potential U(r) 
which determines the integrals and since this part has 
no singularity at r = 0 , the contribution of the relativistic 
corrections to the observed splitting is small compared 
to the valley-orbit contribution, even in the case of Sb 
donors in germanium where the splitting is an order of 
magnitude smaller than for P and As donors. 

V. CONCLUSION 

The main purpose of this paper has been to discuss 
the possible importance of spin-orbit coupling and 
other relativistic corrections on the degenerate effective-
mass ground state of shallow impurities in Ge and Si. 

With the help of perturbation theory and the relevant 
selection-rule theorem, one finds that in first order, 
spin-orbit coupling does not affect the impurity ground 
states and, in particular, one finds that there is no 
splitting of the sextet state in Ge or Si. In second order, 
the effect of spin-orbit coupling is estimated to be of 
the order 5X10~5 eV or smaller. I t is emphasized that 
these results depend on an assumption of the effective-
mass theory; namely, the admixture of Bloch functions 
from higher conduction bands into the impurity wave 
function can be neglected.21 If one could go beyond this 
approximation, one should expect a first-order effect of 
spin-orbit coupling on the impurity ground states in 
Ge or Si, since the Bloch states of higher "non-s-like" 
conduction bands are also affected by spin-orbit 
coupling in first order. 

At present it is not known to what quantitative 
extent Bloch functions from higher bands are admixed 
into the impurity wave function.22 Kohn's order of 
magnitude estimate indicates, however, that the admix
ture is considerably larger for impurity states in Ge 
than it is for those in Si. The admixture will determine, 
to some extent, the difference between the g factor of a 
donor electron and the appropriate g factor of the 
conduction electrons. For Si there is no such difference 
(see Ref. 19). For Ge there is a small difference (to our 
knowledge there are no available experimental g values 
for the conduction electrons). 

21 Since the Bloch states of a higher "non-s-like" conduction 
band will be affected to a different degree, depending on the 
particular k, by spin-orbit coupling (or by the other relativistic 
corrections), the effect of the admixture will certainly depend on 
the composition of the impurity wave function in terms of higher 
band Bloch states. 

22 The admixture of a higher band Bloch state k into the 
impurity wave function will depend on the strength of the im
purity potential in the central cell and on the energy gap between 
the energy of the state k and the conduction band minimum. 

As for the two other relativistic corrections, namely 
the s-shift correction and the mass-velocity correction, 
they do not depend on the spin and they have the 
symmetry of U{x), Their effect on the degenerate 
effective-mass ground state consists of a binding energy 
increase of the order of 10%. The splitting caused by 
these corrections is determined by the anisotropic part 
of U which—due to the tetrahedral symmetry of U— 
vanishes with rn(n>3) for r—>0. Therefore, the 
splitting is small compared with the valley-orbit 
splitting. 

Thus, it can be seen that, although spin-orbit coupling 
and the other relativistic corrections are of some 
importance for the binding energy of the impurity 
states, and for the g factors of donor electrons, the 
relativistic corrections cannot account for the observed 
energy level structure of the impurity ground states. 
Spin-orbit coupling will not result in an additional 
splitting of degenerate energy levels large enough to be 
observed with present experimental techniques. As for 
the relative importance of corrections (1), (2), and (3), 
it appears that the potential correction U—Uo, i.e., 
correction (1), which lowers the effective-mass binding 
energy and causes the valley-orbit splitting, is the most 
important one, at least for donor states in Si. Thus, an 
accurate computation of the Z7's for different impurities 
in Si would be of considerable interest. For Ge the 
admixture of Bloch functions from higher bands may 
also be of some importance (see Ref. 19 for g factors of 
donor electrons). In such a case the small observed 
valley-orbit splitting of antimony donors, which is by 
an order of magnitude smaller than for phosphorus and 
arsenic donors, can be caused by a partial compensation 
of the non-relativistic corrections (1) and (2). 
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APPENDIX A: THE COEFFICIENTS 
oif8 AND §?• (Ge) 

The correct zero-order wave functions given by Eq. 
(8) can be determined by symmetry considerations. 
To this end, let us write the wave functions of the 
Kohn-Luttinger Hamiltonian H0 which are obtained 
in the effective-mass approximation and which trans-
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form according to the representations T\ and Tz of the 
tetrahedral point group T&, in the form 

*N = E* ( 1 ) f c , */»> = £ * , / 3 ) ^ 0 = 1 , 2 , 3 ) , (Al) 
i i 

where \f/i is given by Eq. (6). If we number the minima 
of the conduction band in the (1, — 1, — 1), (— 1,1, — 1), 
(1,1,1), (—1, —1, 1) directions by 1, 2, 3, 4, the coeffi
cients a2

(i) and a3i
(i) (i= 1, 2, 3, 4) are given by: 

for (fi) 
aic« = J( l , l , l , l ) , 

and for (Tz), 
<W3 )=i(i , - 1 , - 1 , 1 ) , (A2) 

W » = i ( i , - 1 , 1 , - 1 ) , 
<W»=i ( i , 1 , - 1 , - 1 ) . 

With the help of Eqs. (Al) and (A2) the two-component 
wave functions transforming according to the repre
sentations 2r6, 2r7, and ATs can be determined immedi
ately. The first case (2T6) is trivial. In order to deter
mine the wave functions associated with 2 I \ and 4r8, 
let us write 

X = E ^ I ( 3 ) 0 M F = I f l a % , Z = Z ^ 3 ( 3 ) ^ , (A3) 
t 

where <fo is given by Eq. (9). In terms of these functions 
and their time reversal conjugates (indicated by a bar), 
the correct zero-order wave functions are given by: 
for (2T7) 

* i 7 = ( l / v 3 ) ( X - ; f + Z ) , V27=K*17 

and for (2T8) 

* 1 8 = ( l / v 2 ) ( X + i F ) , * 3 8 = i ^ 2 8 , (A4) 
* 2 8 = ( l / 6 l / 2 ) ( Z + ; r - 2 Z ) , * 4 8 = i ^ l 8 . 

APPENDIX B: SPIN-ORBIT COUPLING 
IN SECOND ORDER (Ge) 

An upper limit for the second order change of the 
energy of the effective-mass ground state is given by 

E2= [ ^cdmjxf/iuJr/AE, (Bl) 

where AE~ 1 eV. Let us assume that in the vicinity of 
an impurity nucleus the effective-mass wave function 
can be written in the form 

fc(Ge) = F(t) (Q/2)^Za(ki)^s+b(ki^P2, (B2) 

where \p4S and \f/±p are normalized atomic orbitals of a 
free Ge atom. The dominant contribution to the matrix 
element of Eq. (Bl) comes from inside the central cell. 
In the limit where r —» 0, the potential has the form 

U(r) = -[e2(Zd-Zo)A]+const^ys. (B3) 

Clearly, it is the Coulombic term of the potential 
which, together with the \p orbital in t̂-, determines 
the value of E2; one finds 

E2= (\F(0)\^P/2)l(Zd-Z0)/Zo]2S2(4p), (B4) 

where S2(4:p) is an upper limit for the second order 
change of the atomic 4p orbital given by 

/ ft2 \ 2 1 /Z0e
2\2 

S*(±p) = ( ) ( ) 
W W AEa0

4\ a0 / 
4TT r (RiP)2dr 

X— / - , (B5) 
3Ja.8.r*(l+Zdr0/2ry 

where do is the Bohr radius. This quantity can be 
calculated without difficulty if one substitutes for the 
radial eigenfunction R^py the approximative formula 
which applies for r/a^n2/ZP The resulting upper 
limit S2(4cp) gives an unrealistic large value for the 
actual second-order change of the atomic 4̂> orbital. 
Therefore, E2 is estimated roughly by substituting for 
S2(4p) the value found by Herman20 for the first-order 
correction of the 4p orbital, 0.071 eV. Taking b2= 1/10 
and assuming that the corrected value for |F(0)|2 is 
larger by a factor of ten than the corresponding value 
for the effective-mass envelope function, one finds 
£2<5X10-5eV. 

23 H. A. Bethe and E. E. Salpeter, in Encyclopedia of Physics, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35, p. 1. 


